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Abstract:\)New upper bounds are given for the expected value of a convex
function. The bounds emplo;;ws.ubgraq_?gnt inforrnation and the conjugate
function. Weﬂerwg t_he bounds}\anﬁ compared),helﬁwith previous bounds with
different information requirements.
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1 INTRODUCTION

) Evaluating the expectation of 8 convex function i= a central require-
ment in utility theory (see, for example, Fishburn [1970]) and stochastic
programming (see, for example, Dempster [1980)). In generol, these problems
. involve optimizing the expectation of some function of certain random
variables and decision parameters. We assume that this function is convex
and that certain properties of the convex function and the underlying
probability measure are known. We show that new upper bounds on this

X expectation are available when the information includes subgradient and

E tonjugate function information. This result is especially useful when the

original integral is not easily computable as we show below.

The most basic bound on expectations of convex functions is Jensen's

lower bound (Jensen [1906] which requires knowing only the finite means of

the random variables. Madansky [1959], following Edmundson [1956], gave an

upper bound based on the theory of mement spaces. This bound again requires

finite mean value information and & bounded n-dimensional rectangular

domain of stochastically independent random variables. Ben-Tal and

[ Hochman [1972] extended and refined the Edmundson-Madansky bound by

; including information of the expected value of the absolute difference
between the random variable and its mean.Gassmann and Ziemba [1986)

b provide a weaker bound that does not regquire independence (as in Dupacove

d [1974]) or n-dimensiconal bounded regions. Frauerdorfer [19G6] provides the

extension of the Edmundson-Madansky bound with dependencies and know-

ledge of the joint expectations of the random variables.
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The general process of obtaining these bounds as solutions of

moment problems is described in Birge and Wets [1986]. The solution of
linear approximations is given in Birge and Wets {1987]. Explicit solution
procedures also appear in Ermoliey, Gaivoranski and Nedeva {1987] and Cipra
. "76]. They are also used in Dula [1986] to provide bounds for the expecta-
tion of convex funclions with additional properties given first and second

moment information.

Our results differ from the above results in our not requiring explicit
moment information but instead information regarding the conjugate
function and the expectation of the gradient and the inner product of the
gradient and the random vector. We first give a one-dimenstional result in
Section 2. Section 3 provides an extension in n-dimensions. Seclion 4
compares our bound with previous bounds in R and Section S provides the

comparison in R". Section 6 describes possible refinements, and Section 7

gives conclusions.

2. AN UPPER BOUND INR

Let (R, 2, F) be a probability measure space and let X: Q- (a,b) be

a random variable, where -o0¢a<b¢+oo, with distribution F.

Let : (a,b] -+ R be a convex differentiable function We dencte

expectation with respect to F by E and throughout this section we assume

that E¢(X), Etb'le and EX¢ (X) exist and are finite.
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Theorem 2.1 Let ¢: {a,b)—R be a convex differentiable increasing function

and assume that Erp'[H]‘/o. Then,

EoiR ¢ ¢ (ERQ R g
(K] blw[x)l (2.1

Proof: For any convex differentiable function ¢ on (a,b], the following

inequality holds:

$ls) - ¢(t) » (s-t) ¢'(t) forall s,t € (a,b) (2.2)

set t= [clearly in (a,)] , s = EXQWL
e [clearly in (a,b)], 5 EOTH)

Since ¢ is increasing and E¢'(X)>0, s€la,b). Substituting st in (2.2}

we obtain

K¢ ol ESOIRD) _ [ERGIRD o) oy )
oK) HLEEEELL - [EREER - X1 o1 (2.3)

Take expectation on both sides of (2.3) with respect to F and

observe that in the right hand side of (2.3) (with E$'(X)>0l:

EX'IX) £ aerel - Eseti(n] =
7Y E'(X) - EX$'(X] = 0.

The result follows. 8]
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Remarks 2.1

(1) If ¢ is strictly increasing ana concave then inequality (2.1) is reversed.

[2) If ¢ is strictly decreasing, then assuming E4'[X)<0, inequality (2.1) is

still valid.

(3} The differentiablity assumption on ¢ can be relaxed. For if ¢ is

convex its left and right derivatives ¢.(x) and ¢', (x] exist, and are

finite and non-decreasing. Moreover the subdifferential of ¢ is
given by, 34(x) = (zeR : ¢'(x)¢z¢$'(x]) [see e.g Rockafellar |1970], pp.
228-229).
Theorem 2.1 remains valid if we substitute any
z €3 ¢lxl=(¢_(x), ¢, (x]) for $'(x).
0

Jensen’s inequatity for a convex function ¢ provides us with a lower
bound for E4(X) -

G(ER)) ¢ EdIX) (2.4)

Combining inequality (2.4) with Theorem 2.1 allow us to derive a re-

arrangment type inequality

Corollary 2.1 Under the assumptions of Theorem 2.1, we have

EN®'(R] 3 E(RIES'(R) (2.9)

Proof Simply follows from (2.1), combined with (2.4}, and using that ¢ is

increasing and E¢'(X) >o. 0
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More generally, let g: {a,bl—R be a given increasing function.

Since ¢ is convex, ¢' is increasing and o f(t)=9'(glt)) is increasing. Then
inequality [2.5) implies

EgIXIfIX) > EgIR) EfIRX) (2.6
Inequalities {2.5) or (2.6) can be used to obtain bounds on systern reliatl-
ity. For general results on rearrangement inéqualities and applications

see Karlin and Rinotl [1981] and the references therein.

3. AN UPPER BOUND IN RN

In this section we present a natural extension in R of the upper

bound derived in Theorem 2.1.

Let X be a random vector on the probability space (@, Z, F} with

distr ution function F and let S C R" be the support of .

Assume that S is convex and let ¢: S—R be a convex differen-

tiable function. The gradient of ¢ at x is denoted by Vo(x]. The conju-

gate conwvex functinn of 4 iz definecd b

$*(yl=sup lxtg - ¢(x))
be

In the sequel we assume that E¢(X], EXTVMX] and EV¢[K) exist

and are finite.

Theorem 3.1 E®(X) ¢ EXT VoK) - $*ETHK)) (3.1)

Proof Since ¢. S—Ris convex and differentiable, the gradient inequality
holds, ie., dla) - ¢lp) 3 la-B)TVo(p) for all a, B € S. (32)
N e SN N e T e e T L L N o
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Setting g = ¥ In (3.2) and taking expectation with respect to F in inequality
(3.2} implies

ES(R) (ERTVHR) + dlee) - aTEVOX) for all « € .
Hence,

ES(X) ¢ EX T(K) + inf (dlad) - o ETIR). (3 3)

x

Mate that: 1

inf (¢la) - o EZO(K))=- sup (o' EVHX) - dlod) = - d* [EVK).
[# 4 Q

Inequality (3.1) follows immediately from (3.3). o :

Remark (31) An alternative proof of Theorem 3.1 may be derived using
the following useful relation: (see Rockafellar {1920], p. 257)
$* (Volz) ) = 2T 76(2) - $(2) 13.4!

Setting z=X and taking expectation in [3.4) we obtain
ES(K) = EXT V(K] - Ed* (VHIX) (35)

But since ¢ is convex so is ¢* and hence by Jensen's inequality '

O*ET K] ¢ ES*(VH(R)) 13.6)

Then (3.5) combined with (3.6} implied (3.1). This proof will be useful to .
refine the upper bound; see Section 6. a
Remarks 3.2

() If 4 is concave Inequality 31is reversed.

(2) As mentioned in Remarks 2.1 (3], Theorem 3.1 remains

valid if instead of V¢ we substitute any ze 9 ¢. 1]
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The cne dimensional version of Theorem 3.1 [n=1, 3={a b)) provides
us with the upper bound E¢(X) ¢ ERG'(K) - ¢* (E4'(X)): =C. The next result
shows that the bound Cis bettos thar the upper bound 0 derived in

Theorem 2.1.

Theorem 3.2 Under assurnptions of Theorem 2.1, we have

Ed(XI¢C D (3.2)
Proof For any convex functio ¢ and any e dori 4, @ € dom 47 the
inequality
dloc) + ¢*(B) 3 af (3.¢) k
holds Suhstituting in (3 A} o - E\{'ﬂ[ﬁ—] e lahl=darn & anl
B=E¢'1¥) € range ¢' C dom ¢*, the result [3 ?) follows 0

4. COMPARISONS OF BOUNDS IN R

Throughout this section ¢: B—R is a given convex differentiable
convex function and X is random variahle with distribution F and density f

with support (a,b). We compare the upper bounds

C = EX$'(X) - $*(EQ'X)) and D = ¢ [—f&‘]—] with the following

well known upper bounds:

Edmundson-Madansky [1956]

M (o) 6 (a) + (x-b) ¢ (b) (4.1
b-a

where x: = EIX) < oo, [a,b] is a finite interval.
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BerrTal-Hochiman (1972}
g - dydlal BBy gy d_(ral (4.2)
Z w%-a ez 2 b (%-a)
where x = E(¥] « %o [ab]is a finite interval, and
b x
d=Eix-ul= 2] %) F12) = 2] [x%) dFix) s the
< a

expected absolute deviation about the mean. Using this
N additional information on the random variable X. it is shown
\ that BH gets closer to E$[X). ='¢ than EM ie,® ¢ BH ¢EM
« Remark 4.1 The upper bound BH can be obtained for an infinite interval
v (a,b), - = ¢ a < b ¢ + oo, under additionals assumptions on
o ¢; see Ben-Tal and Hochman (1972]. 0
N Example 4.1 $(%) = %2, x>0, K~U (0,1} Thenx =1/2, d=1/4, $ =1/3.

Using (4.1) and (4.2} we obtain EM =1/2 and BH = 3/8.

v Here ¢* fy) =1/4 gz and then we compute C = 5/12,
; D=4/9 Jensen's inequality yeilds the lower bound
J=1/4andJ ($ ¢(BH<C (D ¢EM a
’ The next example illustrates a situation where EX¢'(K) and E¢'(X]
_: : (and hence C and D) are easy to compute while E¢(X) requires the
‘-; evaluation of a complicated integral. Moreover, in this example, the
2

upper bounds BH and EM are shown to be trivial, ie, BH=EM= + oo
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Example 42 Let $(x)=-Ln (1-t€) -1¢x<1, and let ¥ be a random variable

with density Flx}=3/21x2) for ogx!l
- 1
Then, § = [ 1) L (F54) dx 14.3)
0

To compute the integral (4.3) we use the following known

integrals (see e.g Gradshteyn and Ryzhik (1980} pp. 557-558I:

[l 3™ Ln (143 dx = /A (Ln2-la+n) - (A=)

[ x™MLn (b dx = VA W - ¢ A1) (A>-)

where (1) = -y, ¥ = 05772215 Euler's constant and the functions
¢, B satisfy

Plx+1)= w[xl+;'<-, «p("z”}-xp(%] =260, x>0 (see e.g.{12)p. 94S),

After some algebraic manipulations one obtains ¢ = 5/3 - 2Ln2
= 0.280372.

The conjugate function is given by

2
&* (4= 1421 + Ln ( -l-—H——‘“*g"f] .

EX$'(K) = 315 «dx =1, E¢'(¥) = 3[1g xdx = 3/2.

Hence, ¢' (E¢'(X)) = $*(3/2) =~ 0.4653 and thus C= 0.53468 and
D=¢1(2/31=9/5 =~ 0.58778.

Jensen's inequality yields the lower bound J = ${x) = $(3/8) =~ -
0.1515. A rough estimate of ¢ could be obtained by averaging the upper
bound C and the lower bound J to give 0.34309.

Finally we note that since here ¢(1} = +o0, EM=BH = +o0_ (It can
be venfied that d =0) a
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In Theorem 3.2 we show that C ¢ 0, and Ben-Tal and Hochman

prove that BH ¢ EM. Examples 4.1 and 4.2 illustrate situations where
C <D ¢ EM. Infact we tested many other examples and found C ¢ EM.
This inequality is not, however, always valid as illustrated in our next

example.

Example 4.3 Let ¢(X)=1-(1- (x - 192, 0¢x¢Z and

fR) = —2— (1-(1- 1x - 1972, 0¢Re2.
a-7

Then, ¥ =1,EM=1,BH ~ 0.7766, d= ¢{x]) = 0 and ¢ = E(X] = 0.447. The

conjugate ¢* is ¢* (Y =yll + —L—) + Ly, (4.3)
{2 [ 2
Y] ]+g 2 |+g

s 3 ‘4 '
HP'(R) = ———— = 2. =0.
EX$'(X) 3(4“-111 2.1065, and E¢'(X) = 0

Hence ¢* [E¢'(X)) = $*(0)=0 and then C = 2.1065 > EM=1. 0

Note that the bound D is not computable here since the
assumption of Theorem 2.1 E¢'(X)>0 is violated. The example not only
demonstrates that EMis better than C, but also that the bound C may be
a "bad" upper bound. However, we show in Section 6 that the bound C can
be considerably improved to be even sharper than BH; see Theorem 6.1
and Example 6.2.

We have already mentioned in the intraduction, that the compu-
tation of the upper bounds EM and BH requires a finite mean x. This is not
the case for C. Further BH requires the value of d which may be difficult
to compute. In the last example of this section we consider the case
when'x and d fail to exist and therefore the upper bounds EM and BH are

not available.
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Example 4.4 Let ¥ be a random variable with density
2

w1+ %)

fix) = D<x<+o0andlet dlx)=-27x.

o -
Thend = 23 (® A% _ 4y=2 42 =-28284, and EXp' (K =-42
n 0 1v,<

EXOH) =~2 . Hencec=—¢'§-¢*[—ﬁl=3—‘£—§=-2.1213. a

S COMPARISONS OF BOUNDS IN R

Gassmann and Ziemba (1986) extend an idea of Edmundson and
Madansky (1956] to derive an upper bound on the expected value of a
convex function of a random vector. The bound is given as the solutian

of the following linear program: (see Gassmann, Ziemba (1986}, Theorem i) !

GZ = max(}:tt(v]?\ 2 Aj=1 Z 7\v x Ajy 0l (5.1) \

et =i '
where ¢: S—Ris a convex function, S C R" is convex, vy, ..., V) are the
extreme points of a bounded convex polyhedron containing S, and :
X = (EXy, ., Exn]T is the finite mean of the random vector ¥. We compare

the bound 6Z with the upper bound derived in Theorem 3.1:
C=EXT Volx) - $*EV(X) .

Example 5.1 (Taken from Gassman-Ziemba [ 1986] p. 42

2 2
x 3/ Fx-x V2T 2 2
@[X1,X2]=8 1, f[x‘,lez J ( 172 if % +><2 g1 .
L otherwise :

Y 'd‘fff(lff . T U R R I Ay
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- X% 3 ' \f‘-'x; x1 2 2 £
¢=Ep'1=+-j [ EVh-x o dx dx, =2 ~10%4  (52)
2 A o2 e

Using (5.1) the best upper bound derived in [11] is shown to be
GZ = 1.54308. UWe now compute the hnund L The canjugate of

¢lx), %5) = e¥1is ¢* (yy, Yo) = Yy Lny, -y; and EV (K] = (Ee*t, 07 -
T 2?2
[% , 0) (using 5.2, then ¢* (kv oiX] = ¢* (%, us= (-;’- ILn 3-2) = -U.YY48.
Now,

_ Al, 3 Y x1 2 2 _
EXTHRI<ER e =2 [ I_J‘:; X € \f x| - %, dx, dx,=
)

2 -
i‘ie;‘l = 0.2146 and then C = 120948 < 6Z ~ 154308,

Note that Jensen's inequality yields the lower bound J = ¢ (x)=¢ (0,0 =1
and thus an estimate of ¢ could be obtained by

d+C . 10424 giving an error of about ?%. 0

For a random vector ¥ = (X,, .. Xn)T with independent components X,
the Edmundson-Madansky and Ben-Tal-Hochman upper Bounds are
avﬂlable where §S is an n-dmensional rectangle of the form

5= igl (6, , b;] . They are given by the following expressions [1]:

al’ .
N
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EM=Y .. 2 rﬂ_"}’:‘@(' clwherecn=a c-h 70 K \&
i=0 =0 k= ! b-a
X ~a
andy‘;=2“ K (5.3)
k%
m .k | n
BH=2 (me, nglcplasl, ...... a5 ) (5.4)

43
where §y islor2or3, a3 is the set of 3N n-dimensional vectors whose

components are all I's and/or 2's and/or 3's,

o b g%
1 2= - 3) 2 2lb, -%)
K _ oK_ - - K
P3-1-P1 F‘k a1 3 a bL 3, 3{(
Rs mentioned in [11], for the independent case the upper bound GZ is in

fact worse than EM {and therefore BH).

Example 5.2.

sz b

2
2, -
Let ¢[>< x]— > —2- KRy = %Ko,

l1ifog¢ X, X, ¢1
fIx,, ><2] ={ r2
o otherwise

NN

--------
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Then, § = €4 ix %) = '3 sing {5.3) and (S.4) we obtain

&
: respectively EM=:‘4-{¢(D,0) s OO0+ $1,0) + (1,1 =%
! .
Lg
and BH = (610.0) + 0.0 + #(1,0)+ ¢ 01.1) + S0, b ol o
o R < <
D)
3 f, L Lmeled =3 from (51 we have:
b ¢l,2.*¢[2,ll*:‘-¢[z,2] 3 fro (5.1 we
MUN !
GZ=ma><(-?+ 5 <*2?\4:?\l +7\2 +7\3 +7\4=|,7\3 *7\4-5,
L
N / --‘- & - . l =
) 2\.2+?\4-2]=max(l ;\zngazgzl 1
;’, Now we compute the con jugate function at the point x* = {x,*, xz‘)T
;
¢*lx:, x; ) =,l (x*+e) Hx*+e), A = il e- n,u’.
3 Z 4 -5
¥
and € V ¢lx,, %)= (2,07, Ex ol - % Then ¢*(E 7¢(x)) =
$* (2,00 = 1. This gields the upper bound C= —;— and we have
$<BH<C<EM<BGZ
; Finally Jensen's inequality yields the lower bound J = (%) =
; [2,2]0[ e incidently that > ¢ 4]
8]
\ The bound C is in fact sharp (i.e , C = §) for many examples ‘
: For example, consider a piecewise linear function of the
% form:
v
L2
>
W
L

ot
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: where t13 fixed This s the form of the recourse function in
stochastic Linear programming lsee Wets 19664 In thic caze,
.
e S A e vl S < Ao

: 'Tb*["v"l:lnf;?\ .bl [Vl]‘_,7\=l,‘-/\.|\"l=v. fs.‘ ol : ‘5 E”
- from Rockafellar (1970), Theorem 16 S, where

. [ 4

: ¢ 1V1=sup (v - -t ') {57

st ifv=n

' + 00 gtherwise

' From [5.7),

Y vtifvecaln'li=1, K

[}

i $*ivl=

¢ + o0 gtherwise (5.8)
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Let $(x) = (wt) 7l (71x) riot necessarily unique) and let
Vd(») = 7(»), then E($(x] = !-Z[[x-tlT m{x))

- £l 7)) - £ (T r1x)

= £’ P4ix)) - Q*(E(THIRI,

where we note that EIV$(x)) € co (' |1, ., k). Hence, ¢=C. [5.9)
6. REFINING THE UPPER BOUNDS IN B AND R"
The upper bound C derived in Theorem 3.1 can be naturally sharpened in

the one dimensional case, when ¥ is a continuous random variable with

density function f(x).

Thegrem 6.1
Let 9 B —R be a convex differentialbe function and ¥ a random

s aa 4w

variable with support (a,b) and density f(x). Then,

b ~

4 ESX) ¢ (K (a,b)- [ x6IX) fix) i - * (EHRE=C (6.1
. < a
. where K(a,b): = be(blflb) - ad(alf(a) (6.2)
N

Mareover C is sharper thanC,ie, C (¢ (6.3
| Proof:
- From Theorem 3.1in R, E¢(x) ¢ C=EX ¢'(X) - ¢*(E'(K)) (6.4)
L b :

Integrating by part EX ¢'(¥) = _f % ¢'(x) f (x) dx we obtain from (6.4):

a
b b

: EGx) ¢ (x00) £ P - [ 9l) 1) dx - [ xd(x)F bl dx-0*(E(K)
' a -]

5\‘\!\\!"" b\\‘-' Y




(u)

i
b
)
]
»

b
=K (a,b) - EQ - | %dlx) F(x) dx - S*EHIK (6 5)

a

and then (6.1] follows. To show that C’s\ C, observe that

23

=-;-[E><¢'[><] + EG(K] - ¢*(E¢'(K)) =% (C +E¢ (X)) and that E¢(X) < C,
implying (6.3} a

exampte 6.1
We reconsider Example 4.3 given in Section 4.

2
Kla,b)=K(0,2) = fn andé[x:»{x]f‘[x] dx=§5£%]. This yields the

upper bound C =% = 12766 < C = 2.1065. Note that we

still have EM=1 < C: but see Example 6.2. 0

It is interesting to note that when ¥ ~ U (a,b) then the upper
bound C is better than EM. For if ¥ ~ U(a,b) then EM = 9-[-6% $(b)

and € = Lb ¢ + ¢ (al- ¢ ¢)) where ¢ - S8l ¢ (i), b

(since ¢ is convex).
Hence, from the inequality ¢(b) + ¢*(£) > b &, it follows
immediately that C ¢ EM.

Following Remark 3.1 of Section 3, we can further sharpen the upper
bound C by using a lower bound established by Ben-Tal and Hochman
(1972) which is better than Jensen's lower bound. Let g: R—R be a convex

function, and Y a random variable with support (a,b] then:

T N R Tt N e e o o, A T O N, L W P T A A N
. X A A B » g K R g A 8 L0 B WY . Y N N, £} [} 1S . . .. X .,



EqY) s g+ 9+ i1g) g i - —9— k=L fg.d) (6.6)
q paly 2(3) ) g3 2Hp) gf’

and Lq (p.d) 3 qlElY)), where G =Ely) < oo, d=E|Y-0|and p: =Pri':gl

From {3 5] we have EX] = EX$'(X) - E¢*(¢'(KD 6.2

Appluing (6.6) with g: =$* and Y. = ¢' (X} one obtain: [we dencote
$': = E$'(R)

EQ*'(R) 3 po* (o' + —2%1 ¢ (81 6 (&' -=9— » (0* EQ'N)  (6.8)

2(1-)

and hence from (6.7] this implies .

EG(K) ¢ EX $1X) -L ., (d) =c¢c. (¢.9)

whereg=Pr (¢'K) > ¢')andd=E| ¢p'(R)-¢' |
Furthermore, if X is a random variable with density f(xl, even sharper

bounds are possible. Following the proof of Theorem 6.1 together with

(6.9) we obtain

b
c? =T K(apl- [ x0UxIF (xddx - L () (6.10)

a \d
Clearly, I:?g c“: and C? ¢C,. A natural question is whether
E? orC? is better than BH? It seems difficult (if not impossible]

to prove such aresult in general. However in our worst
examples (4.3 and 6.1) this appears to be true as demonstrated

below.

P .
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Eample 6 2

lWe have already computed in Example 43and 61 = 0447

BH = 0 7766, EX¢'X] = 2107,K (0,2) = + N"\’”’““” 3[2 41

For the random variable ¢'(X] we compute ﬁ- L and d —4—2;

Then using the con jugate ¢* given in (4.3) we obtain

Lyx (4.5 l ($*(d) + ¢* (-d) = 15354, Using (6.9) and (6.10)
it follows that ¢ ~ 05711 and Ch= 0.5088. Thus,

pechch B ceMcc<C o

We now turn to the problem of refining the bound C in R". For a random
vector ¥ = [xy,....,%n) unth independent components ¥; the Ben-Tal

Hochman Lower bound is available when S is an n dimensional rectangle

of the form§S = ﬂ la, hl and is given by:

N _n
Zm ﬁ"11 i), o) (611

3 where h: K" =R is a convex function, 8 islorz, A isthe

set of 2" ndimensional vectors whase components are atl

! - k_ ok _ K_— _% K_o dk
I's or/and 2s, B =B, = l-|3k, 3, =% * 2&' 8= X 2“_&]
S and d, B, >'<l denote the corresponding parameters of K.

To apply (6.11) a< in (6.7) and (6.8) requires showing that the random
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7 4 !Z»(l,.”,Hn] has independent components, and computing
the carresponding parameters B, and dki This farly

romplicated task can be avoided by characterizing the
class of functions for which the function ¢(-}=¢*(V¢(-})
1S convex. Moreover this allows us to express the new
upper bound explicitly in terms of the problem's data
{without requiring knowledge of ¢*); see Theorem 6.2.

The following result gives a sufficient condition for ¢
to be convex for a large class of functions arising in

applications.

Lemma 6.1

Let ¢: SCF{: -» R be a given twice continuously differentiable
function. If g: er: - R" glz): = $(z)is convex, then

Y(z) = $*(T9(z)) is convex.

15 @ convex function if and only if it satisfies the gradient
inequality, ie., foranyxand yin$S

-9l > eyl oty (6.12)

By definition, ¢ (U = ¢* [V $ly)) ard thus ¥ ¢y} = oYV ivelyl
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where V° Myl denates the Hessian of & UsingV ¢* = (¥ ¢,

t fallows that Pply) = 7 2 $ly)y. Inequality 16 12) then

becorres

$* 17 $IxI1- $* 1V dlyll 7 kg’ 72 dlyly (£ 13)
Now, since $* is convex, applying the gradient inequality to

¢* and using V ¢* = ( Vq»)", we obtain

$* (7 $0x))- &* (V $(Y)) ) (T d(x)- Voly)'y.

Thus to prove (6.13) it is sufficient to show

(VoI T y> (x-u) W2 6ly) y 16.14)
Since glx): = V¢(x) is assumed convex, we have
Vol - Toly) 3 (x-y) FZ $ly). (6 15)

Multiplying (6.15) by y3o (recall that Sc R )yields (6.14) .
a
We can now derive a refined upper bound for a random vector X with

independent components ;. We make the following assumptions:
W s=Riab)cH
'=‘ 1 { +

(1) Vél-})is convex
Thegrem 6.2

Suppose () and (11) hold. Then,
E®(R) <EXTT(K) - Ly = CP where (6.16)

a'; ) (6.17)

| n

- 1 n 1 n,_ 1
L, Ezg_)l‘d;kl (as‘,...,asnlr%(as‘,..., % -0 o,
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From (6.7) (in 8™ we have
EQIR) = EXT T IR} - ES* T HIR))
under Assumptions (1} and (1), Lemma 6 115 applicable and thus

E(X) = EH* (VIR ;Lw as defined in (6.1} Moreover,

KA ALSY  YEXEEEAS, LGB TT L

using p(z) = zTV-p(z] - #(z], the expression (6.17) follows. O

Example 63

?_'. We reconsider Example 5.2 where we already computed
-

$=0.25, EM =075, C=050,BH=0375,6Z+=1, EXTVMHI =15 and

d d 4 '<1 >‘<2=%. The assumptions (1) and (11 are clearly

o&tlSﬂGd and thus Theorem 6.2 is applicable.

We compute B, =6, = —;— and thus using (6.17)

., Vg3 3 31 d o3y Lok x

: L= W, 2 e w2, e 2) « v (4 )

- . ) T } 5,2,1,2,
with w(z,,zzl-[z',zzl W[z,, 22] t[z z] E 222 z,2,

\ Then Ly = 11875 which yields the upper bound cR = 03125 <BH:0.375




. 2. CONCLUSIONS

We have given new upper bounds for tho coprotstiz- ar ===
function using gradient and conves conjugate function information. We
have shown that these bounds and their extenzion: can be better than
previous bounds in several examples. We alzo dermonstivaled how our
bounds are ecpedislly useful when the ariginal integral is complicated
but has a gradient that can be easily integrated or when the information
required for other bounds (e g, moments) is not available. The new
bounds are then applicable in a variety of applications with thece

characteristics.
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